Schubert complexes and degeneracy loci

نویسنده

  • Steven V Sam
چکیده

The classical Thom–Porteous formula expresses the homology class of the degeneracy locus of a generic map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by Pragacz by expressing this alternating sum as the Euler characteristic of a Schur complex, which gives an explanation for the signs. Fulton later generalized this formula to the situation of flags of vector bundles by using alternating sums of Schubert polynomials. Building on the Schubert functors of Kraśkiewicz and Pragacz, we introduce Schubert complexes and show that Fulton’s alternating sum can be realized as the Euler characteristic of this complex, thereby providing a conceptual proof for why an alternating sum appears. Résumé. La formule classique de Thom–Porteous exprime la classe d’homologie du locus de la dégénérescence d’une fonction générique entre deux fibrés vectoriels comme une somme alternée des polynômes de Schur. Un preuve de cette formule a été donnée par Pragacz en exprimant ce alternant somme comme la caractéristique d’Euler d’un complexe de Schur, ce qui donne une explication pour les signes. Fulton puis généralisée cette formule à la situation des drapeaux de fibrés vectoriels à l’aide alternant des sommes de polynômes de Schubert. S’appuyant sur le Schubert foncteurs de Kraśkiewicz et Pragacz, nous introduisons les complexes de Schubert et montrent que la somme alternée de Fulton peuvent être réalisées en tant que Euler caractéristique de ce complexe, fournissant ainsi une preuve conceptuelle pour lesquelles une somme alternée apparaı̂t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Fe b 20 02 Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Schubert Polynomials and Degeneracy Locus Formulas

In previous work [T6], we employed the approach to Schubert polynomials by Fomin, Stanley, and Kirillov to obtain simple, uniform proofs that the double Schubert polynomials of Lascoux and Schützenberger and Ikeda, Mihalcea, and Naruse represent degeneracy loci for the classical groups in the sense of Fulton. Using this as our starting point, and purely combinatorial methods, we obtain a new pr...

متن کامل

GROTHENDIECK POLYNOMIALS AND QUIVER FORMULAS By ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, and ALEXANDER YONG

Fulton’s universal Schubert polynomials give cohomology formulas for a class of degeneracy loci, which generalize Schubert varieties. The K-theoretic quiver formula of Buch expresses the structure sheaves of these loci as integral linear combinations of products of stable Grothendieck polynomials. We prove an explicit combinatorial formula for the coefficients, which shows that they have altern...

متن کامل

ar X iv : a lg - g eo m / 9 60 20 19 v 1 2 7 Fe b 19 96 FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI ; The Q̃ - Polynomials Approach

Introduction 1. Schubert subschemes and their desingularizations. 2. Isotropic Schubert calculus and the class of the diagonal. 3. Subbundles intersecting an n-subbundle in dim > k. 4. Q̃-polynomials and their properties. 5. Divided differences and isotropic Gysin maps; orthogonality of Q̃-polynomials. 6. Single Schubert condition. 7. Two Schubert conditions. 8. An operator proof of Proposition 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010